MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 9

1. Prikry forcing

Recall that a cardinal κ is measurable if there is a normal, κ -complete, nonprincipal ultrafilter on κ . I.e. an ultrafilter $U \subset \mathcal{P}(\kappa)$ such that U is closed under intersection of less than κ many sets, and for every $\langle A_{\alpha} \mid \alpha < \kappa \rangle$, with each $A_{\alpha} \in U$, the diagonal intersection $\triangle_{\alpha < \kappa} A_{\alpha} := \{\beta < \kappa \mid \beta \in \triangle_{\alpha < \beta} A_{\alpha}\} \in U$.

We call such a U, a normal measure on κ and sets in U are called measure one sets.

Lemma 1. Suppose that U is a normal measure on κ , $A \in U$, and $F : A^{<\omega} \to \tau$ for some $\tau < \kappa$. Then there is $B \subset A$, $B \in U$, which is homogeneous for F. I.e. for all $n, F \upharpoonright [B]^n$ is constant.

Proof. this will be a future homework problem.

Let κ be a measurable cardinal and U be a normal measure on κ . The Prikry poset, \mathbb{P} consists of pairs $\langle s, A \rangle$, where s is a finite sequence of ordinals in κ and $A \in U$. $\langle s_1, A_1 \rangle \leq \langle s_0, A_0 \rangle$ iff:

- s_0 is an initial segment of s_1 .
- $s_1 \setminus s_0 \subset A_0$,
- $A_1 \subset A_0$.

Given a condition $p = \langle s, A \rangle$, we say that s is the stem of p.

Let G be \mathbb{P} -generic over V. Set $s^* = \bigcup \{s \mid (\exists A) \langle s, A \rangle \in G \}$.

Lemma 2. s^* is an ω -sequence cofinal in κ . And so, in V[G], $cf(\kappa) = \omega$.

Proof. Suppose that $\alpha < \kappa$. We claim that the set

$$D = \{ \langle s, A \rangle \mid \alpha \le \max(s) \}$$

is dense. For if $\langle s, A \rangle \in \mathbb{P}$, then let $\beta \in A, \beta > \alpha$ with $\max(s) < \beta$. Then $\langle s \cup \{\beta\}, A \rangle \in D$.

So let $\langle s, A \rangle \in D \cap G$. Then $\alpha < \max(s)$; i.e. for $\beta = \max(s) \in s^*, \alpha \leq \beta$. It follows that s^* is cofinal in κ .

For any two $\langle s, A \rangle$, $\langle t, B \rangle$ in G, by taking a common extension we see that either s is an initial segment of t or vice versa. Then, for any $\alpha \in s^*$, if $\langle s, A \rangle \in G$ is such that $\alpha \in s$, we have that $s^* \cap \alpha = s \cap \alpha$, which is finite. It follows that $o.t.(s^*) = \omega$

Lemma 3. \mathbb{P} has the κ^+ chain condition.

Proof. Any two conditions with the same stem $\langle s, A \rangle$, $\langle s, B \rangle$ are compatible, since $\langle s, A \cap B \rangle$ is a common extension. Suppose that $\mathcal{A} \subset \mathbb{P}$ is a maximal antichain. Then conditions in \mathcal{A} have different stems. I.e. the cardinality of \mathcal{A} is at most the number of possible stems, which is $\kappa^{<\omega} = \kappa$.

Corollary 4. \mathbb{P} preserves cardinals greater than or equal to κ^+ .

Next we have to worry about preservation of cardinals up to κ . Note that this forcing is not even countable closed. It has, however, the following key property:

Lemma 5. (The Prikry property) Suppose that $\langle s, A \rangle \in \mathbb{P}$ and ϕ is a sentence in the forcing language. Then there is a condition $\langle s, B \rangle \leq \langle s, A \rangle$ such that $\langle s, B \rangle$ decides ϕ (i.e. $\langle s, B \rangle \Vdash \phi$ or $\langle s, B \rangle \Vdash \neg \phi$).

Proof. Fix $\langle s, A \rangle \in \mathbb{P}$ and ϕ . Define $F: A^{<\omega} \to 3$ as follows: for $t \in A^{<\omega}$,

- (1) if s f t is a stem and there is $B \subset A$, such that $\langle s f t, B \rangle \Vdash \phi$, then F(t) = 0;
- (2) if $s \frown t$ is a stem and there is $B \subset A$, such that $\langle s \frown t, B \rangle \Vdash \neg \phi$, then F(t) = 1;
- (3) otherwise, F(t) = 2.

Note that since conditions with the same stem are compatible, it is impossible to fall into both cases 1 and 2. So, F is well defined.

By Lemma 1, there is $B \subset A$, $B \in U$, for which F is homogeneous. We claim that $\langle s, B \rangle$ decides ϕ . Otherwise there are conditions $r = \langle t_r, B_r \rangle$, $q = \langle t_q, B_q \rangle$, $r, q \leq \langle s, B \rangle$, such that $r \Vdash \phi$ and $q \Vdash \neg \phi$. By extending these if necessary, we may assume that $|t_q| = |t_r| = k > |s|$. Let n = k - |s|. Then $F(t_q) \neq F(t_r)$. Contradiction with F constant on $[B]^n$.

Lemma 6. \mathbb{P} does not add new bounded subsets of κ .

Proof. Suppose that G is \mathbb{P} -generic and $a \in V[G]$ is a bounded subset of κ . I.e. for some $\lambda < \kappa$, $a \subset \lambda$. Let $p = \langle s, A \rangle \Vdash \dot{a} \subset \lambda$. For every $\alpha < \lambda$, let $\langle s, A_{\alpha} \rangle$ decide " $\alpha \in \dot{a}$ ". Let $q = \langle s, \bigcap_{\alpha < \lambda} A_{\alpha} \rangle$, and $b = \{\alpha < \lambda \mid q \Vdash \alpha \in \dot{a}\}$. Then $q \Vdash b = \dot{a}$, i.e. q forces that \dot{a} is in V.

By density it follows that there is such a condition q is G. So $a \in V$.

Corollary 7. \mathbb{P} preserves cardinals up to and including κ .

Proof. Suppose otherwise. Let G be \mathbb{P} -generic over V. Let $\lambda \leq \kappa$ be the least cardinal collapsed. Since, a limit of cardinals is always a cardinal, and κ is limit, it follows that $\lambda < \kappa$, and λ is regular in V.

Then in V[G], there is some cardinal $\tau < \lambda$, and a confinal function $f: \tau \to \lambda$. (Here τ is a cardinal in both V and V[G]). Then $a := \operatorname{ran}(f)$ is a bounded subset of κ , so by the above $a \in V$. But then we have in that V, a is a cofinal subset of the regular cardinal λ with $|a| = \tau$. Contradiction.

Corollary 8. V and V[G] have the same cardinals.

3

2. An application: violating SCH

Recall that $Add(\kappa, \lambda)$ is the poset of partial functions from $\kappa \times \lambda$ to $\{0, 1\}$ of size less than κ , ordered by extension. For a regular cardinal κ , forcing with $Add(\kappa, \lambda)$ adds λ many new subsets of κ and preserves cardinals. So, it is fairly easy to increase the powerset of a regular cardinal, and we can do it in ZFC. But for singular κ , it is much more difficult.

Definition 9. Let κ be a singular cardinal. The singular cardinal hypothesis, SCH, holds at κ , if $2^{cf(\kappa)} < \kappa$ implies $\kappa^{cf(\kappa)} = \kappa^+$. If κ is strong limit, that is equivalent to saying that $2^{\kappa} = \kappa^+$.

GCH implies SCH. However, we can't use the Cohen poset to violate SCH: suppose κ is singular, and we force with $Add(\kappa, \kappa^{++})$. This will add new subsets, but it is no longer κ -closed. And actually this poset will collapse κ .

To violate SCH we need a different strategy. The basic idea is to start with some large, and so regular, cardinal κ , force with $Add(\kappa, \kappa^{++})$, and then singularize κ . We make use of the following fact:

Fact 10. Assuming enough large cardinals, we can arrange that in V, κ is measurable and $2^{\kappa} = \kappa^{++}$.

Theorem 11. Assuming enough large cardinals, there is a forcing extension in which SCH fails.

Proof. Let V be such that κ is measurable and $2^{\kappa} = \kappa^{++}$ and let \mathbb{P} be the Prikry poset. Let G be \mathbb{P} -generic. Then in V[G], κ is singular with cofinality ω , and we still have $2^{\kappa} = \kappa^{++}$. Moreover, since \mathbb{P} does not add any bounded subsets of κ , κ is strong limit in V[G]. It follows that SCH fails at κ .

Remark 1. The optimal hypothesis is a measurable κ of Mitchel order κ^{++} .

3. Characterization of genericity for $\mathbb P$

Next we will show that using a slight strengthening of the Prikry property, we can isolate a fairly simple necessary and sufficient condition for an object $G \subset \mathbb{P}$ to be a generic filter for \mathbb{P} over V.

Theorem 12. Suppose U is a normal measure on κ , and \mathbb{P} is the Prikry poset defined with respect to U. Let $s^* = \langle \alpha_n \mid n < \omega \rangle$ be an increasing sequence through κ and $G := \{ \langle s, A \rangle \mid (\exists n)(s = \langle \alpha_0, ..., \alpha_{n-1} \rangle, and \forall k \ge n, \alpha_k \in A) \}$. Then G is a generic filter for \mathbb{P} over V iff for every $A \in U$, for all large $n, \alpha_n \in A$.

For the easier direction, suppose that G is a generic filter, and let $A \in U$. The set $D := \{ \langle s, B \rangle \in \mathbb{P} \mid A \subset B \}$ is dense, so there is $\langle s, B \rangle \in G \cap D$. That means that for all large $n, \alpha_n \in B \subset A$.

Now suppose that $\langle \alpha_n \mid n < \omega \rangle$ is increasing, such that for every $A \in U$, for all large $n, \alpha_n \in A$. Let $G := \{\langle s, A \rangle \mid (\exists n) (s = \langle \alpha_0, ..., \alpha_{n-1} \rangle, \text{ and } \forall k \geq n, \alpha_k \in A)\}$. We want to show that G is a generic filter.

G is upwards closed by definition. Now suppose that $\langle s_1, A_1 \rangle$, $\langle s_2, A_2 \rangle$ are both in *G*. Let n_1, n_2 be such that $s_1 = \langle \alpha_0, ..., \alpha_{n_1} \rangle$ and $s_2 = \langle \alpha_0, ..., \alpha_{n_2} \rangle$. Say $n_1 \leq n_2$. Then s_1 is an initial segment of s_2 and $s_2 \setminus s_1 \subset A_1$. It follows that $\langle s_2, A_2 \cap A_1 \rangle$ is a common extension in *G*. So *G* is a filter.

To show genericity, suppose that $D' \subset \mathbb{P}$ is a dense set. Let $D = \{p \mid (\exists q \in D')p \leq q\}$, i.e. the downward closure of D'. Since G is a filter, it is enough to show that $G \cap D \neq \emptyset$. Such a set D is called dense open. We will use the following strengthening of the Prikry lemma:

Lemma 13. For every dense open $D \subset \mathbb{P}$, for every stem t (i.e. $t \in \kappa^{<\omega}$ is an increasing sequence), there is some n and $A \in U$, with $A \subset \kappa \setminus \max(t)+1$, such that for every increasing $s \in [A]^n$, $\langle t^{\frown}s, A \setminus \max(s) + 1 \rangle \in D$.

Proof. Fix D and t. For every s, such that $t \cap s$ is a finite increasing sequence, let $A_s \in U$, $A_s \subset \kappa \setminus \max(s) + 1$, be such that $\langle t \cap s, A_s \rangle \in D$ if such a set exists. Otherwise set $A_s = \kappa \setminus \max(s) + 1$. Let $B = \triangle_s A_s := \{\alpha \mid \alpha \in \bigcap_{\max(s) < \alpha} A_s\}$. This is a slight modification of diagonal intersection, and with some work, by normality of U, we get $B \in U$.

Let $F : B^{\langle \omega \rangle} \to \{0,1\}$ be F(s) = 0 if $\langle t^{\frown}s, A_s \rangle \in D$, and F(s) = 1 otherwise. By lemma 1, let $A \in U$ be a homogeneous set for F.

Since D is dense, let $\langle t^{\widehat{}}h, A' \rangle \leq \langle t, A \rangle$ be such that $\langle t^{\widehat{}}h, A' \rangle \in D$. Set n = |h|. We claim that A, n are as desired. Suppose that $s \in [A]^n$ is an increasing sequence.

Claim 14. $\langle t^{\frown}s, A_s \rangle \in D$.

Proof. Since $F \upharpoonright [A]^n$ is constant, $h \in [A]^n$ and F(h) = 0, we have that F(s) = 0

By the definition of diagonal intersection, for any $\alpha \in A \subset B$, if $\alpha > \max(s)$, then $\alpha \in A_s$. Then $\langle t^{\frown}s, A \setminus \max(s) + 1 \rangle \leq \langle t^{\frown}s, A_s \rangle \in D$. So, $\langle t^{\frown}s, A \setminus \max(s) + 1 \rangle \in D$.

For all stems t, fix n_t and A_t as in the conclusion of the above lemma. Let $A = \triangle A_t := \{ \alpha \mid \alpha \in \bigcap_{\max(t) < \alpha} A_t \} \in U.$

Let *n* be such that for all $k \geq n$, $\alpha_k \in A$. Let $t = \langle \alpha_0, ..., \alpha_{n-1} \rangle$. Let $s = \langle \alpha_n, ..., \alpha_{n+n_t-1} \rangle$. Then by the definition of diagonal intersection, $s \in [A_t]^{n_t}$, so $\langle t \frown s, A_t \setminus \max(s) + 1 \rangle \in D$. And since $\langle t \frown s, A \setminus \max(s) + 1 \rangle \leq \langle t \frown s, A_t \setminus \max(s) + 1 \rangle$, we have that $\langle t \frown s, A \setminus \max(s) + 1 \rangle \in D$. But also, by definition of *G*, we have that $\langle t \frown s, A \setminus \max(s) + 1 \rangle \in G$. So, $G \cap D \neq \emptyset$.